(その1 実験概要)

RC 造,袖壁付柱,高軸力 静加力実験,変形能,曲げ降伏

1.はじめに

1968年の十勝沖地震において,袖壁,腰壁あるいは垂壁 が建物の耐震性能に悪い影響を及ぼすことが明らかにな リ,それ以降,靭性能に富んだ梁降伏形建物を実現するた めに,袖壁等は極力排除されてきた傾向がある。ところが, 1995年の阪神大震災では,逆に,袖壁等を取り払った純フ レームの損傷が大きくなり,修復が困難になるという欠点 が露出した。純フレームの損傷が大きくなるのは設計で意 図しているところであるが,今後耐震設計法が性能評価型 設計法に移行していったときに,終局限界性能だけではな く,使用限界性能や修復限界性能を向上させることも必要 となってくる。よって,使用性能や修復性能を高めるのに 有効である袖壁付柱の性能評価法を確立することが必要 とされている。本報告では以上の観点から行った2体の袖 壁付柱の静加力実験について報告する。

2.実験概要

2.1 試験体

袖壁付柱の静加力実験は比較的多く行われている<sup>1)</sup>。一 昨年これらの実験データの再整理が行われたが<sup>2)</sup>, せん断 破壊する試験体が圧倒的に多く,またその断面の特徴より 曲げ降伏する試験体であっても変形能に富んでいる試験 体は非常に少なかった。よって本研究では既往の実験で不 足している高い軸力下で曲げ降伏する試験体を対象にし て静加力実験を行った。

表-1に試験体寸法,配筋,作用軸力を示す。ここで袖壁 部の壁筋比は,袖壁縦・横筋1組分の断面積(壁厚×壁筋 間隔)に対する袖壁縦・横筋の断面積の比率で表している (袖壁端部縦筋は除く)。また,表-2に鉄筋強度を,図-1 に試験体配筋図をそれぞれ示す。試験体は2体で,断面寸 法および配筋は共通とし,実験パラメータは軸力の大きさ とした。この試験体は,1階柱脚で柱降伏,2階以上は梁 降伏する建物の1階柱に袖壁が付いてることを想定して いる。

2.2 加力方法

加力は,加力装置により左右交番に行い,試験体に逆対

| 正会員 | 東川敬子 1           | 同 | 佐々木潤一郎 <sup>2</sup> |
|-----|------------------|---|---------------------|
| 同   | 孫浩陽 <sup>2</sup> | 同 | 加藤大介 <sup>3</sup>   |

称変形を与えた。まず,試験体上部の鉛直ジャッキにより 一定軸力を与え,次に水平ジャッキにより水平力を与えた。 また,加力中は常に左右の2台の鉛直ジャッキにより,試 験体上部のL型加力ジグを水平に保った。載荷は,1/200, 2/200,3/200,4/200,5/200,6/200の部材角をそれぞれ 2回づつ繰り返し,所定の軸力を負担できなくなるまでと したが,試験体 CSW1 は軸力を負担していたので,その後, 8/200,12/200のサイクルを1回づつ載荷した。

2.3 計測内容

本実験では,加力装置に取付けたロードセルにより水平



表-2 鉄筋強度

|     | 降伏強度(MPa) | 破断強度(MPa) |  |  |  |  |  |  |
|-----|-----------|-----------|--|--|--|--|--|--|
| D6  | 336       | 512       |  |  |  |  |  |  |
| D10 | 391       | 541       |  |  |  |  |  |  |

表-1 試験体寸法と配筋

| 計驗休夕        | 柱断面              | 袖壁断面(片側          | 高さ   | <u></u><br>十<br>立<br>で<br>十<br>弦 | 柱部帯筋     | 袖壁端   | 袖壁縦•横筋   | 作用軸力 |  |
|-------------|------------------|------------------|------|----------------------------------|----------|-------|----------|------|--|
| 动员在         | (mm)             | 部分)(mm)          | (mm) | 「土口」工作                           | (帯筋比)    | 部縦筋   | (壁筋比)    | (kN) |  |
| CSW-1       | $200 \times 200$ | $200 \times 100$ | 1200 | 4-D10                            | 2-D6@75  | 1-D10 | 2-D6@75  | 473  |  |
| CSW-2 200 × | 200 × 200        | 200 200 100      | 1200 | 4 D10                            | (0.0042) | 1 D10 | (0.0085) | 769  |  |

Tests of R/C columns with irregular section (part1 Outline of tests)

力を,試験体各部に取付けた変位計により試験体の変形を, 鉄筋各部に取付けた歪ゲージにより鉄筋の歪を測定した。 また,試験体に発生したひび割れ幅,コンクリートの圧壊 領域の長さを測定した。

3.実験結果

図-2(a)(b)に各試験体の水平力 水平変形角関係を示 す。水平力はP- 効果を考慮して求めた。すなわち,柱 試験体の柱頭と柱脚に生じるモーメントを試験体高さで 除したものである。また,水平変形角は上下の基礎間の水 平変形をその高さで除したものである。図-3 は最大耐力時 と加力終了時のひび割れの様子を示したものである。

加力の結果,試験体 CSW 1,2 はいずれも+3 サイクル (1/100rad)で最大耐力を示した。軸力の低い試験体 CSW1 は加力最後まで軸力を保持したが、軸力の高い試験体 CSW2 は軸力負担能力の喪失により実験を終了した。

4. 各損傷状況

表-3 は使用限界状態(修復せずに建物の使用を継続でき る限界),修復限界状態(修復すれば使用できる限界),お よび終局限界状態(安全限界)に関連する試験体の損傷状 況をまとめたものである。ここで,本報告では,修復限界 に相当しているかぶりコンクリート圧壊は,試験体表面の 圧壊が初めて観察された時点とし,コアコンクリート圧壊 は,柱帯筋あるいは袖壁横筋が露出し始めた時点とした。 終局限界を表す点としては,最大耐力の80%に復元力が低 下した点と 軸力負担能力を喪失した点の2通りを考えた。 ここで,軸力負担能力喪失点とは加力中に試験体が軸力を 保持できなくなった点とした。

5.まとめ

軸力をパラメータとして2体の袖壁付柱の静加力実験 を行った。その結果,軸力の低い試験体 CSW1 が加力最後 まで軸力を保持したのに対し,軸力の高い試験体 CSW2 は 軸力負担能力の喪失により実験を終了した。

[参考文献]

1)大久保全陸:腰壁, 垂壁付き鉄筋コンクリート梁の弾塑 性挙動に関する実験的研究,日本建築学会論文報告集,第 204号,1973.2

2)孫浩陽:異形断面を有する部材の強度と変形能に関する 研究,日本建築学会大会学術講演梗概集,2000.9





|       | 使用限界状態関連 |         |          | 修復限界状態関連 |          |         |          | 終局限界状態 |         |
|-------|----------|---------|----------|----------|----------|---------|----------|--------|---------|
|       | 袖壁端部     | 袖壁縦筋    | 由壁縦筋 柱主筋 |          | 袖壁コンクリート |         | 柱部コンクリート |        | 軸力負担    |
| 試験体名  | 縦筋引張     | 引張降伏    | 引張降      | 圧壊(rad)  |          | 圧壊(rad) |          | 力の80%  | 能力喪失    |
|       | 降伏(rad)  | (rad)   | 伏(rad)   | かぶり      | コア       | かぶり     | コア       | (rad)  | 点(rad)  |
| CSW-1 | 0.0037   | 0.0021  | 0.0060   | 0.0098   | 0.0098   | 0.0098  | 0.028    | 0.020  | 0.064より |
| C3W-1 | -0.0050  | -0.0027 | -0.0050  | -0.010   | -0.010   | -0.010  | -0.032   | -0.015 | 大       |
| CSW-2 | 0.0049   | 0.0034  | 0.010    | 0.0051   | 0.010    | 0.015   | 0.026    | 0.015  | 0.026   |
| C3W 2 | -0.0038  | -0.0038 | -0.010   | -0.0054  | -0.010   | -0.015  | -0.025   | -0.015 | -0.026  |

1 東京大学工学系研究科大学院生

2 新潟大学自然科学研究科博士課程前期大学院生

3 新潟大学教授 工学部建設学科 工博

Graduate School, Univ of Tokyo.

Graduate School, Niigata Univ.

Prof.Dept.of Arch.and Civil Eng., Niigata Univ., Dr.Eng.