配筋詳細に着目した RC 造せん断破壊柱の軸力保持性能の評価法に関する考察 STUDY ON EVALUATING METHOD OF AXIAL LOAD CAPACITY OF SHEAR FAILING R/C COLUMNS CONSIDERING REINFORCING DETAILS

加藤大介*,李 柱振**,中村友紀子***,本多良政****

Daisuke KATO, LI Zhuzhen, Yukiko NAKAMURA and Yoshimasa HONDA

Objectives of this study were to propose evaluating method of axial load carrying capacities of R/C columns after shear failure using experimental data reported in the previous paper. For this purpose two criteria were examined, i.e. Mohr-Coulomb criterion and slip criterion between shear crack surfaces considering friction. Effects of confinement given by various hoop reinforcing details were specially paid attention. Two assumptions were used, i.e. i)the cohesive stress was degraded due to damage of core concrete and ii)confining stress by hoop reinforcement was degraded due to damage of reinforcement depending on the details. Finally evaluating equations of maximum deflection angles of shear failing columns experienced before losing their axial load carrying capacities were proposed according to two assumptions mentioned above.

Keywords: reinforced concrete column, shear failure, axial load capacity, reinforcing detail, Mohr-Coulomb criterion 鉄筋コンクリート柱, せん断破壊, 軸力保持能力, 配筋詳細, モールクーロン破壊基準

1.はじめに

本報告では,文献 1)に引き続き,同文献で報告した試験体を用い, 鉄筋コンクリート造柱のせん断破壊後の軸力保持能力の評価法につ いて検討した結果を報告する。

筆者らは, 文献 1)でさまざまな配筋詳細をもつ RC 造柱のせん断 破壊後の軸力保持能力の評価実験について報告した。この実験は, 単純軸圧縮実験結果(軸力 - 軸変形関係)と曲げせん断加力実験結 果(軸力保持能力喪失部材角)との関連を検討することを第一の目 的とし,軸加力実験と曲げせん断実験を同じ諸元を持つ試験体を用 いて行っている点が特徴である。さらに,曲げせん断加力実験で作用 している等価軸力と軸圧縮実験より得られた帯筋により抵抗しうる 軸力を用いて評価される軸力比が曲げせん断試験体の軸力保持能力 喪失時の部材角を精度よく評価できる,と結論づけている(2章で もう少し説明する)。

一方,RC部材の変形能あるいは軸力保持能力を評価する手法とし て,文献2)3)などのモールクーロンの破壊基準を用いるものや文献 4)などのせん断ひび割れ面の摩擦に着目するものがある。筆者らの 文献1)は後者の手法に属するが,本報告ではこの両者の手法を検討 する。このとき,コンクリートのみに生じる応力を用いる必要があ るが,主筋の負担軸力を差し引くことを試みる。さらに,文献1)で は軸圧縮実験との関係に重点をおいたが,本報告では軸力保持能力 喪失時における帯筋の効果の低減に着目した。 2.実験のまとめ

本章では文献1)よりその結果を抜粋して実験結果を報告する。

表1は,軸圧縮試験体の諸元およびそれに対応する曲げせん断試 験体が示されている。すなわち,主筋,帯筋,コンクリート強度をパ ラメータに13体の軸圧縮実験を行い,さらに,全く同一の諸元を持 つ試験体を用いて,26体の曲げせん断加力実験を行っている。特に 帯筋の配筋詳細が主要なパラメータであった。図1は試験体形状お よび配筋図である。試験体は180×180×1200mmの長方形で,基礎治 具で挟み込まれている上下の端部を基礎部分と考えるため,実際の 試験範囲は中央部分の360mmである。これらの試験体は特に軸圧縮 実験での加力装置の制限により寸法が決定されている。一方,軸変 形は試験体中央部310mmの区間を試験体の両面で2箇所づつ,計4 箇所で測定している。

加力であるが,曲げせん断加力実験では,試験体中央の試験部分 に逆対称変形が生じるような加力を行っている(いわゆる建研式)。 さらに,軸加力実験では試験体の水平変形および頂部の回転を0に 拘束した上で,軸加力を行っている。なお,この拘束のための水平 力はわずかであった⁵⁾。

図2(a)~(d)に実験結果をまとめた。図2(a)は軸圧縮試験体の 実験結果の例として試験体 W-0の軸力と軸変形の関係,およびその モデル化の方法を示したものである。すなわち,右図の斜めひび割

*	新潟大学工学部建設学科 教授・工博	Professor, Department. of Architecture, Faculty of Engineering, Niigata University , Dr.Eng.
**	新潟大学大学院自然科学研究科 博士後期課程	Graduated student, Department. of Architecture, Faculty of Engineering, Niigata University.
***	新潟大学工学部建設学科 講師・博士(工)	Lecturer, Department. of Architecture, Faculty of Engineering, Niigata University, Dr.Eng.
****	新潟大学大学院自然科学研究科 博士研究員・博士(工) Graduated student, Department. of Architecture, Faculty of Engineering, Niigata University.

表1 試験体(曲げせん断試験体と軸圧縮試験体)の諸元

	試験体諸元							
軸圧縮試 験体名	主筋	主筋の降 伏応力度 y (N/mm ²)	帯筋	帯筋 間隔 S(mm)	帯筋の 降伏応 力度 (N/mm ²)	コンクリー ト強度 _в (N/mm ²)	曲げせん断試験体名 (作用軸力(kN))	
H-0		383	D6(135度フック(6d))	70	316	35.2	H-3 (400)	H-4 (200)
P-0			D6(90度フック(8d))				P-3 (400)	P-4 (300)
W-0	4 040	0 377	D6(溶接)		343	23.4	W-3 (300)	W-4 (500)
S-0	4-D10		D6(90度フック(4d))				S-3 (300)	
W52-0		382	D6(溶接)	52	227	20.2	W52-1 (500)	W52-2 (350)
W90-0				90	337	20.2	W90-1 (350)	W90-2 (200)
D13S-0	4-D13 4- 4	335	D6(90度フック(4d))	70	335	26.7	D13S-1 (300)	D13S-2 (500)
D13W-0			D6(溶接)				D13W-1 D13W-2 D13W-3 (300) (500) (500)	
4W-0		502					4W-1 (300)	4W-2 (500)
D10WH-0		371			316	32.2	D10WH-1 (300)	D10WH-2 (500)
D10SH-0	4-D10		D6(90度フック(4d))				D10SH-1 (300)	D10SH-1 (500)
D10WL-0			D6(溶接)			19.1	D10WL-1 (150)	D10WL-2 (300)
D10SL-0			D6(90度フック(4d))				D10SL-1 (150)	D10SL-2 (300)

一方,個々の試験体の実験結果からも有意な知見が得られている。 図2(b)は軸圧縮試験体の例であるが,これより以下のことがわかる。 i)コンクリート強度のみが違う試験体の比較より,コンクリート強 度の違いは最大強度時のみに顕著に表れ,斜めひび割れ面の摩擦の みで抵抗している状態では影響が少ない。(図2(b-1))

ii)帯筋の詳細のみが違う試験体の比較より,帯筋の詳細の違いは最 大強度時には影響が少なく,斜めひび割れ面の摩擦のみで抵抗して いる状態で顕著である。(図2(b-2))

一方,図2(c)(d)は曲げせん断試験体の例である。図中の は最 初に設定した一定軸力が保持できなくなった加力ステップであり, 曲げせん断加力終了点を示している。この点を軸力保持能力喪失ス テップ(必ずステップという言葉が入る)と呼ぶ。一方,それまでに 経験した最大部材角を軸力保持能力喪失までの最大部材角(あるい) は略して軸力保持能力喪失部材角,この場合はステップという言葉 は入らない)と呼ぶ。本題に戻るが,図2(c)が高軸力を,図2(d)が 低軸力を受ける試験体で,それぞれ配筋詳細の影響を見たものであ る。これより以下のことがわかる。

iii)図2(c-1)と(c-2)の差は少ない。すなわち,配筋詳細の影響は 高軸力を受ける試験体では少ない。これは,対応する軸圧縮試験体 の結果(図2(b-2))に水平線で示した高軸力(N=300kN)の範囲では, 挙動の差は少ないことから理解できる。

図1 試験体形状及び配筋図

図2 実験結果のまとめ

vi)図2(d-1)と(d-2)の差は大きい。すなわち,配筋詳細の影響は低 軸力を受ける試験体では大きい。これは,対応する軸圧縮試験体の 結果(図2(b-2))に水平線で示した低軸力(N=150kN)の範囲では, 挙動の差は大きいことから理解できる。

なお,この高軸力と低軸力の定義であるが,以上の知見より,図 2(a)の初期摩擦軸力計算値 Pfroを基準に判断できるが,正式な定 義は後述する。

3. 軸力保持能力喪失までの最大部材角の検討方法

3.1 検討方法の概要

2章で示した文献 1)の知見と文献 2)4)の評価手法を参考に, せ ん断破壊後のRC柱の軸力保持能力喪失時の部材角の評価法を再検 討する。前述したように,文献1)では等価軸力という概念を用いて 滑り面の摩擦力と滑る力を作用する軸力に換算して評価したが,本 報告では滑り面での力を直接的に評価することを試みる。具体的に は、まずコンクリートのみの応力状態を推定するために、文献 5)と 同じ手法で軸力保持能力喪失ステップの主筋の軸力を座屈をも考慮 しうる主筋の応力度 - ひずみ度のモデルを用いて推定する。次に、 2つの破壊基準を想定し、それらの基準から評価されるおのおのの 試験体の軸力保持能力喪失時の応力状態を表現する指標を算出し, そのときの部材角との関係を検討する。2つの破壊基準としては、 モールクーロンの破壊基準 2)とひび割れ面の滑り基準 4)を対象とす る。最後に,これらの破壊基準を用いて,軸力保持能力喪失時部材角 の評価式を提案する。このとき、2章で示した知見を生かし、高軸力 を受ける場合は配筋詳細の影響がない評価式を,低軸力を受ける場 合は配筋詳細の影響を受ける式とする。さらに 配筋詳細の影響は, 文献 5)と同様に帯筋の拘束効果の低減度合いに影響するとし、配筋 詳細ごとに受けた部材角とこの効果の低減度合いの関係を評価する ことを試みる。

3.2 主筋の負担分の評価

主筋は軸力を負担するとともにダボ効果により水平力にも抵抗 する。しかしながら,本報告では,ダボ効果の評価が難しいこと, 後述するようにほとんどの主筋が軸降伏していると推測できるので ダボ効果は少ないことより,主筋の効果は軸力負担でのみ評価した。 また,本研究ではせん断破壊する柱を対象にしているので,ひび割 れ面は試験体高さ方向の中央の反曲点付近に形成される。したがっ て,部材上下端の曲げヒンジ領域で引っ張りと圧縮を受ける主筋と は異なり,全主筋が有効に軸力を負担すると考えた。

筆者らは文献 6)でRC部材の帯筋で拘束された主筋の座屈後ま での挙動を評価できるモデルを提案しており,文献 5)では曲げせん 断加力試験体の軸力保持能力喪失時の主筋の軸力をこのモデルを用 いて評価した。本報告でも同様に評価することを試みた。このモデ ルでは座屈後の挙動は座屈区間(帯筋何本分の区間で座屈が生じる か)に大きく影響し,モデル上の重要なパラメータになっているが, 本実験では試験体の最終的な破壊状態から,溶接帯筋は1区間座屈, 他の試験体は3区間座屈として計算した。また,軸変形は前述した 試験体の軸変形測定区間の値を用いた。

以上による各試験体の軸力保持能力喪失ステップの主筋の軸ひ ずみ度と軸応力度との関係を図3に示す。縦横軸は降伏時の値でそ れぞれ基準化して示している。結果は軸力保持能力喪失ステップに おいて計算上座屈が始まっている試験体はなかった。むしろ,主筋 が弾性状態に収まっている試験体もあった。以降,この主筋応力度 を sとする。

主筋軸ひずみ度 / 主筋降伏軸ひずみ度

図3 軸力保持能力喪失ステップの主筋の推定軸力

3.3 モールクーロンの破壊基準とそれを用いた評価法

図4(a)はモールクーロンの破壊基準(図上で原基準と表記)とコ ンクリートの応力状態を示したものである。この基準と応力円が接 すると最大耐力となるが,文献2)では最大耐力時には応力円と基準 が接しないが,変形が進むに従って,基準の粘着力 cが低下すると考 え,限界変形時(軸力保持能力喪失点ではなく,耐力が最大耐力の 80%に低下した点で定義される通常の曲げ変形能)の応力円と接する 粘着力 cを求め,限界変形と関連付けている。

従う場合 面(角度)で滑る場合 図4 コンクリートの応力状態と破壊基準の概念

本報告で検討した1つめの方法は,これに習い,変形が進むに従って,基準の粘着力 cが低下すると考え,図4(a)に示すように低下した基準(図上で低下した基準と表記)に接したときに軸力保持性能が失われるとした。すなわち,軸力保持能力喪失ステップの応力円と接する粘着力 cを求め,そのときの変形と関連付けることができる。原基準は,文献1)5)に合わせ c=0.24 g, µ=0.77 とした。これは, Richart らによる静水圧下の拘束効果評価式に合致させた係数となっている。また,応力円は以下の式(1)~(3)で求めた。

$$\sigma_{t} = \frac{N - A_{s} \cdot \sigma_{s}}{b \cdot D}$$
(1)

$$\tau_{t} = \kappa \frac{Q}{b \cdot D}$$
($\kappa = 1$)(2)

$$\sigma_{t} = \alpha \cdot p_{w} \cdot \sigma_{wy}$$
(3)

ここで,Nは作用軸力,As, sは主筋の全断面積と前述した軸力保 持能力喪失ステップの主筋の応力度実験値,Qは軸力保持能力喪失 ステップのせん断力実験値,b,Dは柱の幅とせい,pw, wyは帯 筋比と帯筋降伏応力度である。 は帯筋の拘束効果の低減係数であ る。本研究では配筋詳細により影響を受ける拘束効果を,式(3)から わかるように降伏応力度に係数 をかける形で表現しており,さら にこの効果が水平変形の進行に伴い低減していくと仮定している。 これは配筋詳細によっては帯筋が降伏まで至らないこと,さらに, 水平変形の進行に伴うフックの緩みなどにより拘束効果が低下して いくことを簡略的に表現することを意図したものである。なお,本節 で示す1つめの方法では を1としておく。 3.4 滑り基準とそれを用いた評価法

一方,本報告の2つめの方法は,図2(a)の右側の図に示したよう に,既に生じている角度の滑り面で摩擦により抵抗している破壊 状態を考慮したものである。このとき,摩擦面に垂直な応力度と平

行な応力度 は以下の(4)(5)式で表される。

$$\tau = (\sigma_t - \sigma_t) \cdot \sin \theta \cdot \cos \theta + \tau_t \cdot (\sin^2 \theta - \cos^2 \theta)$$
(4)
$$\sigma = \sigma_t \cdot \cos^2 \theta + \sigma_t \cdot \sin^2 \theta + 2 \cdot \tau_t \cdot \sin \theta \cdot \cos \theta$$
(5)

ここで,角度 は文献 1)に合わせ,実験値の平均である 60 度と した。この状態をモールの応力円で表現すると,図4(b)のようにな る。すなわち,モールの応力円で角度 に対応する点Aを、原点を 通る破壊基準(図上で滑り基準と表記)の線が通るとき(すなわち = µ・)に滑りが生じる。しかしながら,実際に実験で得られ た軸力保持能力喪失ステップの応力円を描くと,通常は滑り基準の 線は点Aを通らない。これは以下のように解釈できる。まず,滑り が生じる点Aを通る傾きがµの直線のy切片(粘着力 c)を求めて, 式(6)で表しておく。

 $c = \tau - \mu \cdot \sigma$ $= \frac{N - A_s \cdot \sigma_s}{b \cdot D} (\sin \theta \cdot \cos \theta - \mu \cdot \cos^2 \theta)$ $-\alpha \cdot p_w \cdot \sigma_{wv} (\sin \theta \cdot \cos \theta + \mu \cdot \sin^2 \theta) + \tau_t (\sin^2 \theta - \cos^2 \theta - 2\mu \cdot \sin \theta \cdot \cos \theta)$ (6)

ここで,実験で得られた軸力保持能力喪失ステップの応力円上の 点Aが図4(b)に示した滑り基準の上にある場合,すなわち = 1と した上で c > 0の場合を考える。この場合は,軸力に抵抗するのに 帯筋の拘束力のみでは不足で,コンクリートの粘着力が必要な領域 と解釈できる。従って,滑り破壊基準で破壊したのではなく,1つめ の方法で示した破壊基準(原基準から低下したどこかの時点)に従 って破壊が生じたと判断できる。本報告では,この様な軸力を「高 軸力」と定義する。なお,式(6)において Q=0(t=0)とすると, この定義による高軸力とは2章の最後に示した初期摩擦軸力計算値 Pfroより大きい軸力であることを意味する。 次に,実験で得られた軸力保持能力喪失ステップの応力円上の点 A が図4(b)に示した滑り基準の下にある場合,すなわちc<0の 「低軸力」を受ける場合であるが,物理的にcは負の値にはなり得な いので,応力円の方が大きくなって基準と接したと解釈される。そし て大きくなる要因が tの低下(図4(b)の tが小さくなりX軸上 を左に移動すれば,応力円は大きくなる),すなわち水平変形の進行 に伴う帯筋の拘束効果の低減である。この低減率が であるが,こ の は,式(6)においてc=0として,式(7)で得られる。

$$\alpha = \frac{(N - A_s \cdot \sigma_s) \cdot (\sin \theta \cdot \cos \theta - \mu \cos^2 \theta) + Q \cdot (\sin^2 \theta - \cos^2 \theta - 2\mu \cdot \sin \theta \cdot \cos \theta)}{b \cdot D \cdot p_w \cdot \sigma_{wy} (\sin \theta \cdot \cos \theta + \mu \cdot \sin^2 \theta)}$$

2つめの方法の考え方をまとめると, *c* > 0 (高軸力)の場合は 1つめの方法に従い, *c* < 0 (低軸力)の場合は, と軸力保持能力 喪失時の変形とを関連付ける,となる。

4. 軸力保持能力喪失までの最大部材角の評価式

4.1 想定する2つの破壊基準による粘着力 cを用いた検討

本節では,まず,想定する2つの破壊基準を用いて得られる粘着 力 cを評価尺度とした検討を行う。すなわち, を1とした上で, それぞれの基準に従い粘着力 cを求め,軸力保持能力喪失部材角と 関連付ける。

図5は軸力負担能力喪失ステップの応力円に接するモールクー ロンの破壊基準のy切片を粘着力 cとして求め,軸力保持能力喪失 までの最大部材角と比較したものである。この方法は3.3節で示し た1つめの方法そのものである。図は帯筋に溶接帯筋を用いたもの だけの場合と全試験体を用いた場合の両方を示している。縦軸は式 (8)で表されるモールクーロンの原基準の粘着力 coで基準化してい る。また,図中には近似曲線とその精度も示してあるが,主筋なし の試験体2体は傾向が若干異なるので近似用のデータからは除外し てある(以下断らない限り同様)。

 $c_{a} = 0.24 \cdot \sigma_{B}$

3)

(7)

ー方,図6は図5と同じ図であるが,滑り基準による粘着力 cと して,軸力負担能力喪失ステップの式(6)による粘着力 cを求め,軸 力保持能力喪失までの最大部材角と比較したものである。図5と図 6を比較すると,溶接帯筋だけの場合も全試験体の場合のいずれも, 滑り基準を用いた図6の方が精度がよかった(図5(a)と図6(a)あ るいは図5(b)と図6(b)の比較)。また,溶接帯筋と他の帯筋の場合 を比較すると,モールクーロンの破壊基準によるもの(図5(b))は, ばらつきは同程度で,他の帯筋の場合が若干下側に位置している。一 方,滑り基準によるもの(図6(b))は, c < 0の範囲で他の帯筋の 場合のみがばらつきが大きい。

4.2 評価式の検討

本節では、3.4 節で示した 2 つめの方法を念頭に評価式を検討す る。3.4 節の最後にまとめたように、考え方としてはc > 0の場合は 1 つめの方法に従うとしたが、本報告では簡略化のため、c > 0の 場合はモールクーロンの破壊基準によるc(すなわち図5)ではな く、滑り基準によるc(すなわち図6)を用いて部材角と関連付け た。これは、i)c < 0の場合との連続性、ii)いずれにせよ粘着力cと の関連付けなので趣旨として大きく違わない、iii)モールクーロン の破壊基準によるcより滑り基準によるcを用いた方が精度がよい、 ことによる。モールクーロンの破壊基準による c と滑り基準による c があまり違わないことを確認するために、図7に両者を比較して おく。モールクーロンの破壊基準による c の方が滑り基準による c よりも若干大きめであるが, c > 0の領域ではほぼ線形の関係があ ることがわかる。

図6 軸力保持能力喪失ステップの滑り基準による粘着力 c と軸 力保持能力喪失部材角の関係

図8は滑り基準による cと部材角の関係, すなわち図6の, c> 0の場合のみを示したものである。本報告ではこれらのデータを直 線近似した。結果は図上に示したが,溶接帯筋を用いた場合(図(a)) と,全試験体の場合(図(b))では大きな差はない。すなわち,両図に 配筋詳細の影響はあまりみられない。そこで、 *c* > 0 の場合は図 8 (b)に示した式を採用した。

次に、 *c* < 0 の場合は, と軸力保持能力喪失時の変形とを関連 付けることを試みる。図9 は軸力保持能力喪失ステップのデータを 用い,式(7)より個々の試験体の帯筋の拘束効果の低減率 を求めて,

と軸力保持能力喪失までの最大部材角と比較したものである。溶 接帯筋を用いた場合(図(a))とその他の帯筋の場合(図(b))に分 けて示したが,傾向が大きく異なることがわかる。すなわち,すでに 示しているように, *c* < 0の場合は配筋詳細の影響が極めて大きい。 そこで,それぞれの図ごとに直線近似を行い,その結果を図上に示し た。これがそれぞれの配筋詳細別の軸力保持性能喪失部材角の評価 式となる。

以上をまとめると評価式として以下の式(9)が得られる。

ここで, *c*は = 1として式(6)で求める。また, *co*と はそれぞれ 式(8)(7)で求める。なお,上記の方法は *c>0 と c<0* で独立に近似式 を求めているので,式(9)の *c =0* での連続性が保証されないが,式(9) は結果としてほぼ連続性をもった式となっている。

図 10 は軸力保持性能喪失ステップのデータを用いて,式(9)による計算値と実験値を比較したものである。相関係数が図中に示されているが,文献 1)では全試験体の相関係数が 0.79,主筋無しを除くと 0.84 だったのに対し,精度が上昇している。

図10は軸力保持性能喪失ステップのせん断力 Qと主筋の応力 s の実験値を用いているので,実際の設計等での利用を考え,Qと s に計算値を用いた場合の評価式の精度を図 11(a)(b)に示した。図 11(a)は Q=0とした場合で,図11(b)は Qにせん断強度計算値⁷⁾を用 いた場合である。いずれも sは降伏応力度 yとしている。式の性 格上 Q=0とすれば若干危険側に,Qにせん断強度計算値を用いれば 若干安全側の評価となる。なお,主筋なしの試験体は検討から除い ていたが,ほぼ安全側にはなっている。

図10 喪失ステップにおける Q sを用いる場合の評価式の精度

5. まとめと今後の検討課題

軸力を帯筋の拘束力による摩擦力のみで支持できるかどうか(具体的には式(6)の cの符号)で高軸力と低軸力を定義し,その軸力レベル毎に「せん断破壊する RC 柱の軸力保持性能喪失までに経験しうる最大部材角」の評価式を実験的に求めた(式(9))。高軸力を受ける場合は,滑り基準による指標(式(6)の c)を用いて部材角と関連付けた。また,低軸力を受ける場合は,帯筋の拘束効果の低減率(式(7)の)を用いて部材角と関連付けた。なお実験結果を反映させ,高軸力試験体では配筋詳細が影響しない式,低軸力試験体では影響する式となっている。

本研究で対象にした試験体は寸法が小さく,シアスパン比が全て 同じである。帯筋フックの形状などの配筋詳細には寸法効果が影響 することが考えられ,また,試験体の応力度 ひずみ度関係には寸 法効果の他に柱の長さ,すなわちシアスパンが影響する。今後これ らの影響を検討していく必要がある。

謝辞 本研究は平成 17 年度科学研究費補助金基盤研究(B)「単純軸 圧縮挙動に基づいた RC 系柱の軸力保持能力の評価手法の開発」(代 表加藤大介)によった。

参考文献

- 加藤大介,李柱振,中村友紀子,本多良政:配筋詳細に着目したRC造せん 断破壊柱の軸力保持性能に関する実験(軸加力実験と曲げせん断加力実 験の関係),日本建築学会構造系論文報告集,第610号(掲載決定),pp-, 2006
- Santiago Pujol, Mete Sozen, Julio Ramirez, Transverce reinforcement for columns of RC frames to resist earthquakes, Journal of Structural Engineering, ASCE, pp.461-466, 2000.4
- 3) 花井信明,平林聖尊,市之瀬敏勝:モールクーロンの破壊基準に基づくRC柱 部材のせん断挙動評価,第28回コンクリート工学年次論文報告集28-2, pp.151-156,2006
- 4) J. P. Moehle, K. J. Elwood, H. Sezen, Shear failure and axial load collapse of existing reinforced concrete columns, The first U.S.-Japan Workshop on performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, pp.233-247, 2000
- 5) 加藤大介,李柱振,菅勝博,中村友紀子:異なる配筋詳細を有するRC造柱の せん断破壊後の軸力負担能力の評価実験,第26回コンクリート工学年次論文 報告集26-2,pp.199-204,2004
- 6)加藤大介,若月康二:高強度材料を用いたRC部材の主筋の座屈性状,日本建築学会構造系論文報告集,第453号,11月,pp.141-147,1993
- 7)日本建築学会:鉄筋コンクリート造建物の靭性保証型耐震設計指針・同解説, 1999